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Summary
In all environments nature provide evidences that two is much more than 
one, and that strength lies in integrity and unity. Highly complex and well 
organized communities formed by aggregated bacterial cells surrounded 
by a hydrated, self-produced matrix of extracellular polymeric substan-
ces are commonly known as the bofilms. The specific biofilm lifestyle con-
fers on the associated bacteria a measurable decrease in susceptibility to 
antimicrobial agents. Once the complex structure of biofilm is established 
resident bacteria are able to survive after diverse types of physical and 
chemical aggression such as UV, heavy metals or phagocytosis. It is now 
clear that biofilm bacteria exhibit a characteristic ability to withstand the 
antibiotics killing mode of action, being directly responsible for difficul-
ties and failures in therapeutic and clinical settings.

Key words
persister cells, bacterial biofilm, antibiotic resistance, SOS response



6

CC
-B

Y-
SA

 3
.0

PL

Kinga Ostrowska

Introduction
Despite the passage of time, acute bacterial infections, life-threatening 
diseases caused by microbial pathogens such as Yersinia pestis or Vibrio 
cholerae are still a weak point of the mankind. Initially, due to discovery 
of antibiotics, vaccines and hygiene rules application, a significant reduc-
tion of lethal incidents related to bacterial infections was observed [1,2]. 
However, the golden age of antibiotics did not solve such challenges as 
occurrence of antibiotic-resistant microbes together with still rising level 
of chronic bacterial infections difficult to eradicate [3].

At the same time the progressive research conducted by environmen-
tal microbiologists confirmed prevalence of bacterial biofilm conglome-
rates in all types of natural niches and ecosystems [4]. Soon clear became 
the fact, that bacterial biofilms display specific biological properties in 
comparison to their planktonic counterparts [5]. First data pointing out 
the direct correlation between persistent infections and bacterial bio-
film development came from J.W., Costerton and N. Hoiby during their 
research of Pseudomonas areuginosa colonization model on the lungs of 
CF patients [6]. Since then, a significant role of bacterial biofilms in the 
pathophysiology of tissue-related infections has been widely confirmed 
and proved. 

Whilst the planktonic bacteria can be easily eradicated by diverse an-
timicrobial drugs, a subset of biofilm bacteria highly tolerant to antibio-
tics survives the treatment and becomes a cause of infection recurrence 
[7]. The ability of bacterial biofilms to withstand harmful bactericidal an-
tibiotic activity, even when these bacteria are susceptible to such antimi-
crobial agents is called “recalcitrance of biofilm bacteria towards antibio-
tics” [3, 8]. Among many suggested reasons potentially able to explain the 
above mentioned recalcitrance phenomenon, the presence of an isogenic 
subpopulation of “persister cells” is now considered as the most impor-
tant one [9]. 

Biofilm as an ancient survival strategy
In all environments nature provides evidence that two is much more than 
one, and that strength lies in integrity and unity. The classic view on bac-
terial biofilms defines those structures as highly complex and organized 
bacterial communities attached to a biotic or abiotic surface formed by 
aggregated bacterial cells surrounded by hydrated, self-produced matrix 
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of extracellular polymeric substances (EPS) [10, 11, 12, 13]. The first evi-
dence of existence of those bacterial conglomerates occurred in the 17th 
century through simple microscopic dental plaque analysis conducted by 
Anton van Leeuwenhoek [14]. The first definition of biofilm describing it 
as a well-organized structure of bacterial cells arose in 1987 by Coster-
ton et al [15]. Biofilm formation has been demonstrated for considerable 
number of microorganisms and is considered as an ancient prokaryotic 
mode of adaptation and a key factor allowing for survival in diverse, often 
hostile environments [16]. The formation of matrix-enclosed bacterial 
accretions does not only protect bacteria from the unfavorable environ-
mental conditions but also due to various dispersal mechanism allows 
bacteria to efficiently colonize new niches [17].

Although surface-associated bacterial biofilm communities are wide-
spread in all natural habitats, where they play an important positive role, 
mostly they are known for their negative and harmful activity, in parti-
cular including biofilm-related infections. Unlike natural biofilms, which 
usually are multispecies structures, pathological biofilms are mostly 
created by a  single species of bacteria [13]. Based on the phenomenon 
of Pseudomonas aeruginosa lungs tissue colonization observed in cystic 
fibrosis patients, J.W. Costerton with N. Høiby and their collaborators 
were the very first researchers to point out a direct correlation between 
persistent infections and biofilm development [3, 18]. The next decades 
of research were about to confirm the crucial role of biofilms in the pa-
thophysiology of tissue-related infections [19]. The direct link between 
microorganism living on the surfaces and human infections development 
became clear and rose to final estimation that 65% to 80% of infectious 
diseases were correlated with bacterial biofilms [3]. The specific proper-
ties of bacterial biofilms are highly problematic and posing an ever incre-
asing problem mainly because of their enhanced tolerance to multiply 
in unfavorable conditions including high concentrations of antibacterial 
agents such as antibiotics.

The architecture of bacterial biofilms: three-dimensional structures 
formation step by step
The unique form of existence presented by bacterial populations living 
on surfaces was pointed out in the 20th century by pioneering studies of 
Henrici and further by Costerton and collaborators. Virulent biofilms for-
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med on multiple types of surfaces are biological phenomenon associated 
with diverse infections and ilnesses such as native valve endocarditis, 
oral diseases or nosocomial infections [20].

Biofilm formation is a compex process arising as a combination of phy-
siological and molecular events. It can be classified into five stages inc-
luding: (a) surface film development, (b) cells attachment to the surface, 
(c) microcolonies formation, (d) differentiation and maturation of the bio-
film along with expression of matrix polymers and (e) finally dispersal of 
bacterial cells from biofilm structure [21]. 

The first and crucial stage in the biofilm formation process involves at-
tachment/adhesion. It occurs in two steps: initial, weak and fully reversi-
ble attachment and strong permanent irreversible adhesion of bacterial 
cells to a surface. Reversible attachment to a surface might be a response 
to the absence of nutrient availability, also due to the impact of hydrody-
namic forces and usage of different diverse appendages and structures, 
such as extracellular organelles including outer membrane proteins, cur-
li fibers, flagella, intimins, invasions, fimbriae and pili. Microbial cells ad-
sorb irreversibly due to specific binding of their adhesins to the ligands 
present on the solid surface, then replicate and form microcolonies with 
physical dimensions equal to tens or hundreds of microns in diameter [12, 
22]. When bacterial biofilm is formed inside macroorganism (in vivo) a si-
gnificant role in this process play the extracellular matrix proteins (ECM). 
Many of bacteria like Gram-positive Staphylococcus aureus posses on their 
surface adhesins for EMC, included in the microbial surface components 
recognizing adhesive matrix (MSCRAMMs). Attached irreversibly to the 
solid surface, bacterial cells secrete an extracellular polymeric substance 
(EPS) which forms a  physical barrier (hydrogel layer) between bacterial 
community and extracellular environment. Highly hydrated (98% water) 
EPS consisting of lipids, proteins, lipopolysaccharides and DNA provide 
the structure and the matrix that define a biofilm as a structure extreme-
ly heterogeneous, both over time and in space [22, 23]. The composition 
of the EPS is different and depends on growth conditions, species and, 
moreover, chemical interaction between bacterial cells within the biofilm 
that stimulate its secretion and formation [24]. One of the widely descri-
bed type of chemical communication is Quorum sensing (QS). This specific 
type of chemical interaction is crucial phenomenon in biofilm formation 
and a central mechanism used by bacteria to query extracellular environ-
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ment [12]. Quorum sensing modulates various cellular functions such as 
motility, pathogenesis, conjugation or nutrient exposition [25]. As bacte-
rial cells replicate and the EPS accumulate, the microbial community ari-
ses into a three-dimensional structure and matures into a biofilm. Biofilm 
resident bacterial cells are bonded together by the EPS, which provides 
structural stability, protection against antimicrobials, immune effectors, 
phagocytosis and other clearance mechanisms [26]. Moreover EPS “glues” 
bacterial cells together, thereby protecting bacterial community against 
detachment from the surface [27]. The last but not least step for biofilm 
propagation and self-renewal of the microbial community is bacterial cells 
detaching and dispersing into the bulk fluid. Microbial cells detached from 
some regions of biofilm structure may attach to the solid surface within 
new environmental niches and give rise to new biofilms [15]. 

Extracellular polymeric substances (EPS)
Biofilms are well organized multicellular conglomerates encased in an 
extracellular polymeric substances (EPS). The EPS are extremely impor-
tant for the biofilm communities since their unique biochemistry pro-
motes recalcitrance to antimicrobial agents such as antibiotics and plays 
a  crucial role in the resistance phenotype of the biofilm conglomerates 
[28]. Moreover, as the EPS encase the bacterial cells, they become the 
first line of interaction with the human immune system [29, 30, 31]. Mu-
tants unable to produce EPS are not capable to create a  stable and su-
stainable biofilm [32, 33, 34]. The EPS production depends on multiple 
important factors, which include growth phase, nitrogen and carbon so-
urces together with their ratio, role of such nutrients as phosphorus, mi-
cronutrients/trace elements or vitamins, also impact of pH, temperature, 
metals, growth conditions (anaerobic versus aerobic) or type of bacterial 
culture (pure versus mixed culture) [35]. The EPS may influence the phy-
sicochemical properties of the cells, such as polymeric features or hydro-
phobicity [36]. Depending on the bacteria that initiate formation of the 
EPS, their composition may be very diverse, but most are comprised of 
polysaccharides, extracellular DNA (eDNA), bacterial proteins and pho-
spholipids.

Polysaccharides constitute the largest part of the EPS matrix and me-
diate adhesion and cohesion, play crucial role in stabilization of biofilm 
structure. The Gram-negative bacteria like Providencia typically produce 
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negatively charged polysaccharides due to the presence of such compo-
unds in their sugar backbone as uronic acids, phosphate and sulfate gro-
ups or pyruvate. Negative charge of the surface permits binding of cal-
cium and magnesium cations, which by the cross-linking binding with the 
polymer chains stabilize the structure of the biofilm [12]. Polysaccharide 
complexes are composed of long and thin chains connected together and 
with the bacterial cells by means of electrostatic and hydrogen bonds 
(an alternative way of binding to bacterial cells may also occur by lipids). 
There are diverse classifications of polysaccharides produced within the 
matrix according to which we can distinguish homopolysaccharides, he-
teropolysaccharides and their linear, branched or cyclic counterparts. An 
important group of polysaccharides presents the capsular (cell-associa-
ted) and slime (not cell-linked) form [37]. 

Most Gram-negative bacteria produce the outer membrane vesicles 
(OMVs) containing diverse groups of molecules, which oversee courses 
of different biological processes. For instance the bacterial OMVs can 
enable transport of molecules to other microbial cells within their envi-
ronment. Experimental studies revealed that OMVs are components of 
the nontypeable Haemophilus influenzae (NTHI) and Pseudomonas aerugi-
nosa biofilm EPS [35, 38, 39]. Although the OMVs role in modulating EPS 
either biofilm structure has not been fully evaluated, mutant organisms 
able to modulate both NTHI and Escherichia coli OMV biogenesis have 
been identified [40]. 

Despite the fact that the number of proteins in the matrix is approxi-
mately 5 times lower than the polysaccharides, those compounds are re-
cognized for their increasing importance in bacterial biofilm function and 
structure. Large-scale proteomic analyses performed on NTHI and Pseu-
domonas aeruginosa EPS showed abundance of both outer membrane 
proteins and type IV pili. Matrix proteins include motility organelles, se-
creted proteins as well as components of adhesins [41,42]. The participa-
tion of two classes of proteins, which are lectins and lyases, is discussed 
in the formation of the matrix. Lectins are named to be a carbohydrate-
-binding proteins, occurring mostly on outer membrane of Gram-negati-
ve bacteria, also peptidoglycan and fimbrias [37]. This molecule abundan-
ce plays a  mediating role in adhesion process between macroorganism 
cells and bacterial cells. Lectin may be also responsible for binding cells 
with EPS and cell co-aggregation, thereby enables the biofilm formation 
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[43]. One of the best and most widely studied proteins are lectins LecA 
and LecB produced by Pseudomonas aeruginosa. Both lectins are carbohy-
drate-binding proteins committed in biofilm formation process [24, 44]. 
Moreover, among others well known proteins we can name large surface 
protein BapA, associated with robust biofilm formation in Gram-negative 
Salmonella species [45]. The biofilm EPS promotes the recalcitrance to-
ward antibiotics and limited killing by innate immune components. Nega-
tively affected by the EPS are also such processes as opsonization by im-
munoglobulins and complementation. It is widely accepted that resident 
biofilm bacteria respond by producing components and factors which 
significantly limit the non-oxidative and oxidative powers of phagocytic 
cells succor survival abilities of bacteria [46]. 

Resistance and tolerance: dangerous composition leading to biofilm re-
calcitrance phenomenon
The biofilm lifestyle confers on the associated bacteria a  measurable 
decrease in susceptibility to antimicrobial agents. Once the complex 
structure of biofilm is established, the resident bacteria are capable of 
surviving the diverse types of physical and chemical aggression, such as 
heavy metals, modulation in salinity, phagocytosis, UV light or acidity [3, 
47, 48]. It is now clear that biofilm bacteria reveal characteristic ability to 
withstand killing mode of action mediated by antibiotic, which is directly 
responsible for difficulties and failures in the manner of therapeutic and 
clinical settings. 

Nowadays it is obvious that wide-studied mechanisms involved in 
antibiotic resistance, like for instance modifying enzymes or efflux, play 
no more than marginal role in the abilities of bacterial biofilms to survi-
ve conventional antibiotics [3, 49]. Bacterial cells embedded in a biofilm 
are capable to partially withstand high dosage of antibiotics, even when 
these microorganisms are completely susceptible to those antibiotic un-
der planktonic life conditions. This complex phenomenon is called “recal-
citrance of biofilm bacteria towards antibiotics” and is due to many me-
chanisms including resistance and tolerance [10]. In vitro studies of how 
planktonic bacterial cells can escape and survive antibiotic treatment 
brought scientist to the two concepts of tolerance and resistance. 

Resistance is simply defined as the ability of bacterial cells to survi-
ve (multiply) in the presence of both bacteriostatic and bactericidal an-
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timicrobial agent [50, 51, 52]. Typically resistance phenomenon is tested 
by evaluation of minimal inhibitory concentration (MIC) of antimicrobial 
compound. Many mechanisms stand behind resistance, including redu-
ced permeability to antimicrobial agents (antibiotics), efflux pomp or 
enzymes destroying antibiotics. Moreover, it is important to realize that 
resistance is very often genetically inherited and hence transmitted be-
tween bacterial generation, or it also can be acquired through horizontal 
gene transfer [3].

Unlike resistance, tolerance is only associated with usage of bacterici-
dal antimicrobial agents, that is to say an antimicrobial agent kills at least 
99.9% of bacterial cells within 12 hours [51]. According to Clinical and 
Laboratory Standards Institute (CLSI), the lowest concentration of anti-
microbial agent capable to reach this killing threshold is hereafter named 
minimal bactericidal concentration (MBC) [51]. In other words, the defi-
nition of tolerance can be expressed as the absence of growth, but the 
presence of microorganisms survival in the presence of a bactericidal an-
timicrobial agent. Two types of tolerance have been distinguished. First 
the genotypic one in which presence of a genetic alterations and modi-
fications lead to ability of the antimicrobial agent to kill bacterial cells 
to be reduced, moreover can be transferred to the next generation cells. 
Diverse examples have been described e.g. in small colony variants of 
Gram-positive Staphylococcus aureus or Streptococcus pneumoniae [3, 53]. 
In the case of phenotypic tolerance the environment leads to decreased 
capacity of antibiotics to kill. However, noteworthy is the fact that this 
type of tolerance is fully reversible once returned to a growth-promoting 
growth media [54]

Study of bacterial biofilms has offered at least several physiological 
explanations of the recalcitrant nature of those bacterial conglomerates. 
Despite the fact that recalcitrance can be defined as a combination of to-
lerance and resistance, biofilm phenotype is more prone to tolerance ra-
ther than resistance [55, 56]. Biofilm recalcitrance phenomenon in most 
of the cases is non-inherited and can be reversed when biofilm structure 
is disrupted and microorganisms return to a planktonic form [57]. 

Antibiotic penetration and drug indifference
Bacterial biofilm recalcitrance is a multifactorial and thus extremely com-
plex phenomenon. Moreover, depending on the type of antibiotics used it 
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involves diverse mechanisms like drug indifference or impaired antibiotic 
diffusion [3]. 

Bacterial biofilms are sessile communities of cells resided in a matrix 
consisting of extracellular polymeric substances (EPS). Historically, it 
was postulated that the intrinsic antimicrobial resistance in biofilms is 
caused by self-produced and adhesive matrix, which was proposed to be 
the main culprit responsible for biofilm recalcitrance phenomenon [48]. 
Many data suggest that physicochemical properties of the EPS can re-
tard or delay penetration of multiple diverse compounds, including an-
tibiotics and antiseptics. The activity of an antibiotic can be reduced by 
adsorbtion on the matrix due to electrical interactions with polymers 
that surround bacteria within the biofilm [58]. Moreover, penetration 
of positively charged aminoglycosides is also slowed by polymers of the 
biofilm matrix which are negatively charged [59]. Observation of antibi-
otic diffusion through cardiac vegetation in endocarditis indicated that 
diffusion gradient is possible in the case of penicillin and glycopeptides 
– teicoplanin [60]. Conversely, Hoyle et al. revealed that EPS of Pseudo-
monas aeruginosa were capable of binding tobramycin, thereby exhibit 
delayed and reduced diffusion of this antibiotic in vitro. Moreover, it was 
indicated that planktonic cells were 15-fold more susceptible to this 
antibiotic than their biofilm counterparts. Other studies showed that 
diffusion of chlorine, a  commonly used antiseptic was also reduced in 
the case of Pseudomonas aeruginosa and Klebsiella pneumoniae [61, 62]. 
Staphylococcus aureus [63, 64] and Staphylococcus epidermidis [65] slime 
remarkably decrease the activity of the vancomycin. Moreover, the ef-
ficacy of such antimicrobial agents as: cloxacillin, imipenem, cefpirome, 
erythromycin, roxithromycin, clindamycin, fusidic acid, trimethoprim, 
doxycycline, gentamicin, netilmicin, isepamicin or ofloxacin, also has 
been negatively affected by the EPS of Staphylococcus epidermidis. More-
over, the penetration profile was suggestive of a  substrate being con-
sumed within the matrix of the biofilm. Other studies by Suci et al. [66] 
revealed a reduced rate of ciprofloxacin transport to colonized surface 
compared with a  transport to a  sterile surface, suggesting that cipro-
floxacin was captured and bonded to the components of biofilm matrix. 
In the light of foregoing studies, the chemical structure of the biofilm 
matrix is clearly significant and has been proved that, depending from 
the type of single pathogen, different types of exopolysaccharides can 
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be involved, due to the environment immediately surrounding the cells 
within a biofilm [3, 67].

Nevertheless, the biofilm recalcitrance towards antimicrobial agents 
cannot be fully explained by reduction or handicap of antibiotic penetra-
tion. Mathematical models suggest that for many groups of antimicro-
bial agents there should be no barrier preventing their diffusion inside 
a  biofilm structure. Such antibiotics as for example ampicillin or gati-
floxacin are capable of strong penetration through the biofilm matrix, 
even though they miss to kill the whole population of biofilm bacteria 
[68, 69]. Even in the case of antibiotics that slowly diffuse through the 
biofilm matrix, a significant percentage of them finally reach all biofilm 
resident bacteria [8, 69]. Furthermore, delayed and retarded antibi-
otic diffusion through biofilm may have significant consequences in the 
physiology of bacterial cell, which can adapt to the presence of antimi-
crobial compounds. Moreover, a  very dangerous trend associated with 
slow or limited diffusion is the transient exposition of biofilm bacteria 
to subinhibitory concentrations of antibiotics. It is also very likely that 
limited diffusion protects the biofilm structure from destructive activity 
of antimicrobials. 

Drug indifference together with alteration with microenvironment is 
another serious problem in the biofilm recalcitrance phenomenon. Most 
antimicrobial agents is known to be more active against metabolically ac-
tive microorganism. Microenvironment within deep layers of the biofilm 
due to a lack of nutrients, pH, or just anoxia can simply have antagonistic 
influence on antibiotic activity [70]. This problem is particularly conspicu-
ous in the case of β-lactam antibiotics, which are active and fully effective 
only in combating metabolically active and dividing bacteria. Analogous 
other physico-chemical characteristic like low oxygen concentration pre-
vailing within the deep layers of the biofilm reduce the bactericidal ef-
fect of such antibiotics like tobramycin or ciprofloxacin of Pseudomonas 
areuginosa biofilm [71]. 
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